
Chapter 2
Considerations for Small Animal Physical
Rehabilitation

Sarah M. Greising, Alec M. Basten, Albino G. Schifino, and Jarrod A. Call

Abstract Translational and preclinical investigations of regenerative rehabilitation
approaches are dependent on an ability to appropriately design and implement
physical rehabilitation intervention able to facilitate physiologically beneficial adap-
tations. To continue to drive success and translation in the field of regenerative
rehabilitation a comprehensive understanding of rehabilitation approaches in rodents
is necessary. The goal of this chapter is to provide an overview on commonly used
physical rehabilitation techniques in mice and rats, with specific emphasis on ideal
physiologic overload and tissue-specific targets.
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2.1 Introduction

Regenerative rehabilitation can affect all tissues and organ systems of the body. As
noted in Chap. 1, it is operationally defined by the field as a therapy that “integrates
regenerative technologies with rehabilitation clinical practices to restitute function
and quality of life in patients with disabilities due to otherwise irreparable tissues or
organs damaged by disease or trauma” (Perez-Terzic and Childers 2014). The ideal
physical rehabilitation approach for a given investigation depends on the objective of
the strategy. To begin, a fundamental understanding of targeted effects (Thompson
2002) for whole-body function, tissue morphology or size, or functional capacity is
necessary to address the question at hand. Targeting whole-body function would
include physical rehabilitation modalities aimed at improving aerobic capacity (i.e.,
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VO2max), endurance (e.g., time maintaining a consistent speed), and/or anaerobic
capacity (e.g., O2 deficit). While improving functional capacity is more related to
skeletal muscle endurance, power, strength, and motor performance, for example.
The goal of this chapter is to provide a broad overview of commonly used physical
rehabilitation modalities in rodents. We provide considerations for their use, phys-
iologic targets, and general pros and cons to consider in methodological design;
spanning methodology for conscious and unconscious rodents. Indeed, many of
these approaches are addressed in subsequent chapters of this work.

2.2 Rehabilitation in Rodents

Rodents, both mice and rats, are a common research animal model with many
benefits for their use (e.g., lifespan, abundant genetic resources, physiology)
(Bryda 2013). The homogeneous nature of rodents allows for easy randomization
into experimental groups. Additionally, significant experimental control over diet,
genetics, environment, and training protocols is a primary advantage of using
rodents. All of which supports research designs that are highly sensitive and
reproducible within a lab or across many labs. In studies utilizing various physical
rehabilitation approaches rodents provide an attractive model system for reproduc-
ible training paradigms. These rehabilitation paradigms being evaluated in rodents
have the potential for scale-up to large animals, as well as translation into the clinical
population to further support evidence-based rehabilitation for injured patients.

2.3 What Is the Ideal Rehabilitation Method?

In both rodent models and the clinical population, the objective of rehabilitation, or
physical therapy, is to act upon the systems of the body to facilitate physiologically
beneficial adaptations. Adaptations can be targeted to a specific physiologic system
or to the whole body. It is imperative for investigators to weigh the pros and cons of
each rehabilitation approach to best fit with their research question. For example, if
the goal of rehabilitation is to improve endurance performance and aerobic capacity
as in disrupted metabolic signaling cases, then treadmill or wheel running may be the
ideal rehabilitation. Alternatively, if the goal of rehabilitation is to improve strength,
as in the case of sarcopenia (i.e., the age-related loss of muscle size and function),
then resistance mimicking activities or neuromuscular electrical stimulation may be
more appropriate. We will overview commonly used rehabilitation modalities and
their benefits and limitations for consideration in this chapter, with the foundation
that the ideal rehabilitation method is the one that physiologically addresses the
research question posed.
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2.4 Common Rehabilitation Methods Implemented
in Rodents

Physical rehabilitation in rodents will be discussed in two categories, those modal-
ities conducted while the rodent is conscious and those conducted when the rodent is
unconscious.

2.4.1 Conscious Methods

Short- and long-term interventions commonly utilize conscious rodents. Various
methodologies range from rodents conducting tasks in a fully voluntary manner, to
tasks requiring external motivation. Methodologies such as treadmill running and
voluntary wheel running represent widespread approaches to impart whole-body or
tissue-specific (i.e., bone and skeletal muscle) adaptations to rodents.

2.4.1.1 Treadmill Running

A common physical rehabilitation methodology that has direct clinical translation is
treadmill walking and running. During a typical rehabilitation session, rodents will
be placed on a motorized belt and the investigator will have precise control of belt
speed and grade (e.g., uphill/downhill). Similar to human treadmill exercise, the
session will provide a stimulus to the cardiovascular (Feng et al. 2019; Lund et al.
2015; Kemi et al. 2002; Wisloff et al. 2002), respiratory, and musculoskeletal
systems (Kemi et al. 2002; Davies et al. 1981). There are two primary utilization
of treadmill running often observed in the literature: acute endurance tests and
chronic aerobic training. Acute endurance test protocols are one-time sessions in
which treadmill belt speed, and/or grade, are progressively increased until rodents,
despite external motivation provided from the investigator, can no longer participate/
sustain treadmill running. At the time of exhaustion, the duration and total distance
covered are recorded, often in conjunction with a measure of blood lactate taken
from venous tail blood as an indirect assessment of anaerobic metabolism/fatigue
(Ferreira et al. 2007). Acute endurance tests are sensitive to detecting the adaptations
to aerobic exercise training and detraining, and thus serve as a measure of the
efficacy of exercise training and/or exercise mimetic programs (Seldeen et al.
2018, 2019).

Treadmill aerobic training protocols vary in intensity, duration, frequency, and
progression (Poole et al. 2020). For example, there are protocols available for high-
intensity interval training (Seldeen et al. 2018, 2019; Picoli et al. 2018) as well as
moderate intensity (Wang et al. 2017; Navarro et al. 2004; Boveris and Navarro
2008) and ramped intensities (Poole et al. 2020). Regardless, treadmill aerobic
training has considerable utility and widespread efficacy as a model for inducing
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beneficial adaptations across pathologies and injuries (Lund et al. 2015; Wisloff
et al. 2002; Goh et al. 2019; Davies et al. 1981).

A primary benefit of treadmill rehabilitation is that the investigator can control the
rehabilitation dose by modulating the frequency, duration, and intensity of the
sessions. For example, if the goal is to achieve one kilometer of distance per day,
that can be precisely administered. This approach can also be helpful when working
with rodent models that do not demonstrate consistent voluntary running behavior if
provided a running wheel (e.g., rats) (Rodnick et al. 1989). However, the “involun-
tary” nature of this approach is also a limitation to consider, as rodents are neither
free to modulate their time engaging with the treadmill, nor are they able to self-
select a running speed. Some studies also utilize shock grids, stiff bristle brushes,
and puffs of air to motivate rodents to accomplish a standardized distance or to
maintain a certain speed for a given amount of time. These motivation tactics to
ensure training compliance may induce stress responses (Svensson et al. 2016) that
should be considered as a factor in study design. Indeed, researchers have demon-
strated that 100% training compliance can be accomplished without motivational
assistance; however, considerable time must be spent familiarizing rodents with the
desired task (>10 sessions) (Arnold and Salvatore 2014). When utilizing the tread-
mill as a rehabilitation tool, it might be necessary to briefly acclimate rodents in 2–3
short sessions prior to initiating treadmill training. Furthermore, identifying “good
runners” and then allocating these specific rodents into the experimental groups can
aid in reducing the influence of intraspecies variability in exercise compliance/
capacity.

2.4.1.2 Voluntary Wheel Running

Voluntary wheel running involves placing a wheel in the cage of a singly housed
rodent and recording the number of revolutions completed per day. Similar to
treadmill running, voluntary wheel running is a whole-body activity that provides
a stimulus to the cardiovascular (Allen et al. 2001; Judge et al. 2005), respiratory,
and musculoskeletal systems (Ikeda et al. 2006; Boveris and Navarro 2008; Gurley
et al. 2016). Rodents are nocturnal animals, and the majority of the total running
distance will occur during the vivarium lights-off phase. Initially designed as a
purely aerobic training paradigm, voluntary wheels can be modified to add a load
or resistance training component (Ishihara et al. 1998). Resistance or load compo-
nents, i.e., high-resistance wheel running, can be modulated by adhering weights to
the circumference of the wheel (White et al. 2016; Soffe et al. 2016), fastening a
manual tensioning device (Call et al. 2010; Konhilas et al. 2005), or through servo-
motor generated resistance brakes (Fig. 2.1a–c) (Ishihara et al. 1998; Mobley et al.
2018). Both low- and high-resistance wheel running paradigms induce beneficial
adaptations across several diseases and injuries (White et al. 2016; Call et al. 2010;
Brooks et al. 2018).

A primary benefit of wheel running is that the rodent can self-select running speed
and engagement with the running wheel (in contrast to treadmill running), creating a
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less stressful rehabilitation environment. Twenty-four-hour access to the running
wheel means that the rodent can assume its natural pattern aligning to circadian
rhythms, while the training volume (i.e., distance covered) is often much greater than
that which can be reasonably accomplished with treadmill running (e.g., 10 km/day)
(Lightfoot et al. 2004; Lerman et al. 2002). Although, it is important to note
beneficial adaptations are possible with as little as 1.5 km/day (Warren et al. 2007;
Landisch et al. 2008; Goh and Ladiges 2013). The time demand on the investigator is
also much less compared to the treadmill as the rehabilitation sessions happen
spontaneously and independent of investigator input. Some limitations of voluntary
wheel running include study design and investigator tolerance for the potential of
considerable between- and within-animal running distance variability. In contrast to
treadmill running where a set distance can be prescribed each day, it is common for
there to be 1–2 km/day differences among rodents and sometimes for the same
rodents across days of the week (Manzanares et al. 2018). In fact, taking advantage
of the between-animal distance variability by the selective breeding of high-distance
voluntary wheel running mice has demonstrated several unique characteristics across
organ systems compared to normal distance runners (Swallow et al. 2005; Garland
et al. 2002; Rhodes et al. 2005; Lightfoot et al. 2004).

2.4.1.3 Whole-Body Vibration

Vibration therapy is an emerging therapeutic modality that requires a mechanical
device to augment oscillatory movement (accelerations). Vibration therapy can be
applied locally to specific regions with handheld devices, mimicking massage
therapy. More often, vibration therapy is administered at the whole-body level via
a standing platform (Fig. 2.2). Whole-body vibration therapy requires a cyclic
mechanical device (actuator or motor) that can be adjusted to specific magnitudes
(g) and frequencies (Hz), which is applied through the standing platform or surface
(Novotny et al. 2013). Vibration therapy is administered passively to rodents
independently housed and fully conscious inside compartments atop the vibrating
platform (Novotny et al. 2013). Vibration supplied through a platform provides

Fig. 2.1 Examples of unweighted and weighted (resistance) voluntary wheels. (a) A schematic
showing a series of masses that are adhered to the circumference of the wheel to add resistance
(Murach et al. 2020). (b) A schematic showing a threaded cuff on the wheel axle that is turned to
add resistance (Call et al. 2010). (c) A schematic of a pulley system that is used to add resistance to a
wheel (Konhilas et al. 2005). Schematics are reprinted with permission from John Wiley & Sons
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mechanical stimuli to semi-rigid body structures and can elicit low levels of muscle
activation, and metabolic stimulation (Park and Martin 1993; McKeehen et al. 2013;
Ren et al. 2020). The biological response of skeletal muscles, muscle spindles, and
nerve-endings to vibration stimulus is characterized as the “tonic vibration reflex”
(Park and Martin 1993; Bongiovanni and Hagbarth 1990; Zaidell et al. 2013). This
passive reflex is proposed to be the result of minor alterations to muscle length under
tension, activating muscle stretch-receptors, known as muscle spindles, and coordi-
nating the proprioceptive response of the musculoskeletal system (Burke et al. 1976;
Weill et al. 1976). When administered as a chronic therapy, vibration has been
shown to improve bone integrity, wound healing (Xie et al. 2006; Vanleene and
Shefelbine 2013; Chung et al. 2014; Rubin et al. 2001), skeletal muscle function
(McKeehen et al. 2013; Xie et al. 2008; Novotny et al. 2014), and even mimics
exercise in rodent models of disease and disuse (McGee-Lawrence et al. 2017;
Novotny et al. 2014; Ren et al. 2020).

Vibration therapy serves as a passive modality that can induce muscle activation
and increase physical activity independent of voluntary participation or central
governing processes. Vibration therapy is a time-effective (<60 min/session), spec-
ified mechanotherapy that can be administered free of anesthetics to fully conscious,
ambulatory rodents. Vibration therapy can be precisely modulated in frequency,
magnitude, and duration, which aids in further understanding vibration stimulus
parameters that are crucial for favorable adaptation. Notably, vibration therapy can
be both beneficial and destructive, as vibration administered beyond what is con-
sidered “low magnitude” (<1.0 g) can instigate muscle injury and impair circulation/
vasculature (e.g., Raynaud’s phenomenon) (Murfee et al. 2005; Necking et al. 1996).
The risk of overexposure to vibration is well-documented, and thus any utilization of
vibration for rehabilitation purposes should be aware of overexposure risk and

Fig. 2.2 Example of a custom-built small-animal vibration plate (Novotny et al. 2013). A concrete
base is used to anchor a linear actuator. A Plexiglas cage for mice is centered on an aluminum
platform and has a low ceiling height (6.3 cm) to limit rearing and jumping by the mice during the
rehabilitation sessions. This custom-built vibration plate has four compartments to deliver rehabil-
itation to four mice simultaneously
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consider utilizing an external accelerometer to provide live feedback of vibrational
accelerations. Commercially available vibration platforms for human use lack the
precision to administer vibration therapy suitable for rodents and other small ani-
mals. Therefore, custom-designed systems developed by research teams are required
to consistently and reliably administer whole-body vibration therapy in rodents
(Novotny et al. 2013). Vibration therapy can cause mild stress and exacerbate
aggressive behavior; thus, animals should receive therapy either individually or
simultaneously in separated compartments. Vibration therapy serves as a clinically
relevant rehabilitation approach, with minimal risk, and clear evidence for applica-
tion across various tissues, diseases, and species of small animals (Xie et al. 2006;
Weinheimer-Haus et al. 2014; McGee-Lawrence et al. 2017; Xie et al. 2008).

2.4.1.4 Alternative Resistance Training Approaches

Rehabilitation modalities that target skeletal muscle size and strength absent from
cardiovascular and respiratory stimuli (such as that from treadmill and voluntary
wheel running) are at times needed to better model a clinical setting or because the
research design is not powered to deal with variance from other organ system
adaptations. Several resistance training approaches have been validated with the
specific intent to overload the skeletal muscle system and produce muscle fiber
hypertrophy (i.e., increase in cross-sectional area) and greater muscle force/strength.
A weighted vertical ladder climbing technique (Fig. 2.3a) uses a cylinder or plank
with horizontal wooden ladder pegs and a top platform with a food reward to
encourage rodents to climb (Hellyer et al. 2012). Upon acclimation, weight (e.g.,
80% of body mass) can be attached to the tail. Cage tops have also been modified to
lift a weight in order for rodents to reach their food supply, effectively creating a
squat rack (Fig. 2.3b) (Cui et al. 2020; Barauna et al. 2005; Tamaki et al. 1992).
There is also a weight-pulling system where rodents pull weighted carts down a
narrow corridor (Fig. 2.3c) (Zhu et al. 2021). Flywheel pulley systems have also
been created to allow for resistance training in muscle atrophy study designs (e.g.,
hindlimb suspension) (Fluckey et al. 2002; Dupont-Versteegden et al. 2006). Across
the preceding techniques, investigators should adhere to the training principle of
progressive overload (i.e., adjusting the weight-load overtime to maximize muscle
overload) to optimize muscle size and strength adaptations in healthy and diseased
mice (Leite et al. 2013; Souza et al. 2014; Duncan et al. 1998).

A primary benefit of these alternative resistance training modalities is their ability
to specifically target the neuromusculoskeletal system for adaptation. Modalities
such as the squat rack (Fig. 2.1b) have the benefit of being a self-selected rehabil-
itation in which sessions can occur spontaneously without extensive investigator
input (similar to voluntary wheel running). When the distance the weight is being
moved vertically (squat rack and vertical ladder) or horizontally (weighted carts) is
known, along with the timing/velocity of the movement, then both work and power
can be calculated serving as complementary outcomes to clinical settings. Similar to
treadmill running, a potential consideration for vertical ladder and weighted-cart
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pulling is animal stress, especially if significant encouragement is needed for animals
to complete the task (i.e., strong bristled brushes, electrical shocks). These two
techniques also require active participation by the investigator.

2.4.1.5 Swimming

The use of swimming to promote whole-body cardiovascular and oxidative improve-
ments is common in rodents (Kaplan et al. 1994; Dawson and Horvath 1970; Wang
et al. 2020; Strickland and Smith 2016), especially in rats. Rats will naturally swim
without further intervention, allowing for a physical rehabilitation modality that is
self-motivating but lower impact than wheel running. Although less common, mice
have also been used in swimming intervention (Spaulding and Selsby 2018; Hsu
et al. 2021). More akin to treadmill exercise bouts, swimming bouts are prescribed to

Fig. 2.3 Examples of resistance training methods. (a) A drawing depicting an animal climbing a
vertical ladder with a weighted conical tube attached to its tail (Hellyer et al. 2012). (b) A cartoon
depicting a mouse performing a squat-like movement in order to access food against the load of a
weighted lever (Cui et al. 2020). (c) A schematic depicting the length of a narrow track for a weight-
pulling exercise. Cartoons depict animals with unweighted and weighted carts attached to their tails
(Zhu et al. 2021). Drawings, cartoons, and schematics are reprinted with permission fromMDPI and
LWW publishers (references noted).
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a single whole-body activity and can mimic an aerobic intervention. In contrast to
wheel running that consists of multiple small sessions over a period of time,
swimming does not have a stop-and-go aspect. This allows the investigator precise
control of the rehabilitation dose, which can be progressively overloaded over a
multi-week intervention. Additionally, akin to the progressive overload rehabilita-
tion described above, an external load can be added to the body or tail of the rodents
during their swimming bouts (Hsu et al. 2021). In rodent models of neuromuscular
trauma, swimming is beneficial when an injury to limbs is present that could
preclude treadmill running, and there is no potential additional injury to the rodent’s
feet (Seo et al. 2014). Swimming interventions can be utilized after incomplete
spinal cord injury and have shown improvements in motor recovery (Loy and
Bareyre 2019).

Necessary considerations for utilizing swimming protocols are water tempera-
ture, and prompt drying (and possibly warming) of the rodent following the swim-
ming bout to maintain body temperature. Often swimming interventions can be
accomplished in a laboratory with less sophisticated and costly equipment than
other intervention types described here. Dedicated investigator observation during
all swimming bouts is necessary, requiring active participation during all interven-
tions. Investigators must monitor rodents for noncontinuous swimming behaviors
such as diving, floating, or bobbing throughout the rehabilitation bout. Prior work
has suggested implementing varying levels of swimming overload in rodents span-
ning low to high intensity based on time (20 min, 60 min, >90 min per bout,
respectively) (Seo et al. 2014; Wang et al. 2020). As a non-weight bearing activity,
swimming is not imparting stress on the skeletal system and thus bone overload is
not expected, with the exception of the load produced from muscle contractions.
Indeed, no impacts on bone mineral density have been indicated in rodent models of
swimming (Portier et al. 2020). Swimming may induce stressful stimuli to some
rodents (Kaplan et al. 1994), that can confound potential results (Strickland and
Smith 2016). Swimming interventions also introduce the risk of drowning, which
may be increased in highly diseased rodent models. Finally, for nontreatment
groups, investigators should consider placing rodents in shallow water to control
for the impact of water exposure on experimental outcomes.

2.4.1.6 Task-Specific Rehabilitation

Increasingly, physical rehabilitation is becoming highly specialized more akin to
occupational therapy in the clinical setting. In rodent models of stroke, traumatic
brain injury, and spinal cord injury, these specialized rehabilitation tasks are
designed primarily to target and strengthen neural pathways, improving motor
recovery (Fenrich et al. 2021). Notably, in some models, these tasks can be utilized
as overuse designs for musculoskeletal models (Xin et al. 2017; Barbe et al. 2021).
In both cases, the use of task-based rehabilitation often requires rodent motivation
much like the resistance-style rehabilitation approaches noted in previous sections.
The tasks the rodents are trained to complete can be vast but commonly they revolve
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around the forelimb to include grasping to retrieve food/treats (Okabe et al. 2017;
Dutcher et al. 2021; Joa et al. 2017) or lever pulling (Xin et al. 2017; Barbe et al.
2021). In some instances of neurovascular injuries, the research design may be most
appropriate for the initial task training to occur to induction of injury, representing a
“re-learning” of the tasks as rehabilitation occurs (DeBoer et al. 2021), more akin to
occupational therapy in the clinic.

During familiarization and training for tasks, ongoing modification to the ability
to obtain the reward may be necessary, starting from no threshold to a further reach
that requires a greater force of activation. While the investigators have an initial
involvement in the familiarization as the tasks are learned, the rehabilitation can
become more rodent-driven as time progresses. Targeted tasks, such as grasping,
represent a more appropriate rehabilitation modality than wheel running, for exam-
ple, which stresses larger muscle groups responsible primarily for weight-bearing
and whole-body physiology. In part, this represents a limitation of wheel running, as
it imparts limited neurologic stimulus. Conversely, forelimb rehabilitation is more
appropriate to target small muscle groups, responsible for fine motor skills.

2.4.2 Unconscious Methods

Methodologies for physical rehabilitation can also be undertaken in unconscious, or
anesthetized, rodents. In many instances, the ability to motivate rodents is limited or
not possible and other modalities are necessary to impart physiologic changes.
Collectively, there is a major limitation to the use and repeated use of anesthetics,
due to the various effects that dose and type of anesthetic have on neuromuscular
function (Ingalls et al. 1996). With this, a major investigator consideration is
consistency in dose and type of anesthetic across studies and experimental groups.
Additionally, limitations with repeated anesthesia are known and provide various
stressors to the rodents (Hohlbaum et al. 2017, 2018; Peng et al. 2021).

2.4.2.1 Repeated In Vivo Electrical Stimulation

In vivo functional assessment of skeletal muscle (e.g., isometric, isokinetic, fatiga-
bility) is often used to evaluate torque (Corona et al. 2021; Lovering et al. 2011;
Mintz et al. 2016; Call et al. 2011, 2013; Ingalls et al. 2004; Warren et al. 1999). The
methodology also has the utility to conduct repeated rehabilitation sessions in
rodents in a minimally invasive manner to stimulate muscle hypertrophy, muscle-
specific metabolism, and neuromuscular function. In vivo muscle stimulation using
needle electrodes (Greising et al. 2018), implantable nerve cuffs (Walters et al. 1991;
Warren et al. 1998), and fully implantable wireless stimulating electrodes
(Deshmukh et al. 2020; Koo et al. 2018) all provide options to directly and precisely
stimulate terminal nerves innervating of skeletal muscles across the body. For this,
investigators use an external stimulator to precisely control the frequency of the
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nerve stimulation and thus the action potential and magnitude of force generation in
a species-dependent manner. Specifically for 50% and 100% activation of peak
isometric force in healthy skeletal muscle in the mouse stimulation at 30 Hz and
125 Hz are required, while the rat would need 50 Hz and 150 Hz, respectively. The
ability for the investigator to also ensure maximal activation of all motor units is
possible by stimulating at high frequencies (e.g., >200 Hz). Investigators also have
the ability to control strictly all aspects of the rehabilitation bout, such as contraction
number, rest periods, and muscle activation.

The primary advantage to in vivo electrical stimulation as a repeated rehabilita-
tion is the independence of rodent motivation which is in direct contrast to training
protocols that stimulate resistance style training and require motivation (Sect.
2.4.1.4) in some form in conscious models as noted in previous sections. Addition-
ally, electrical stimulation is capable of specifically reproducing effects of resistance
training overload unilaterally allowing for an intra-animal control (Lowe and Alway
2002). For electrical stimulation via percutaneous electrodes, needle electrodes are
inserted through the skin to directly stimulate a nerve. One benefit to the use of
needle electrodes is that it does not require invasive surgical implantation of a
device. Needle electrodes are also limited to superficial nerves, such as the peroneal
nerve, which branches off the sciatic to innervate the tibialis anterior muscle.
Additionally, stimulation of muscle groups or units could be possible with stimula-
tion of the sciatic nerve superiorly. Repeated insertions of needle electrodes can
result in scar tissue formation and accumulation, and the exact electrode placement
between sessions may vary slightly compared to an electrode that is surgically
implanted. A nerve cuff is a surgically implanted electrode cuff that surrounds a
nerve of interest. While nerve cuffs have been utilized on superficial nerves, surgical
implantation does allow for targeting nerves that may not be accessible to needle
electrodes, for example, the tibial nerve or the phrenic nerve (Fenik et al. 2001).
Electrodes are often housed externally on the back of the neck and the nerve cuff
method for electrical stimulation permits chronic and direct stimulation of a nerve for
months (Warren et al. 1998). However, this method may be more invasive than using
percutaneous needle electrodes that do not require surgery for implantation. Addi-
tionally, time between implantation and rehabilitation initiation is needed. Recently,
newer methods for wireless implantation of electrodes have been developed. These
methods are similar to the implantable nerve cuff except that the electrodes are
controlled by radio waves and powered by batteries using wireless power transmis-
sion technology to eliminate the need for external wires (Deshmukh et al. 2020). An
important consideration for translating any electrode implantation into a human
population is that a secondary surgery is necessary for the removal of the device
(Ju et al. 2020). However, developing technologies such as bioresorbable wireless
electrodes may become more available, eliminating the need for a secondary surgery
for removal (Koo et al. 2018).

2 Considerations for Small Animal Physical Rehabilitation 49



2.4.2.2 Range of Motion

Continuous passive range of motion uses passive joint movement to mitigate muscle,
tendon, and joint stiffness. This type of physical rehabilitation is common in knee
pathologies clinically (D’Amore et al. 2021). Although less common than other
rehabilitation methods in rodents, the use of passive range of motion in rehabilitation
is known to improve joint range of motion following eccentric and rotator cuff
injuries (Chang et al. 2015; Matsuo et al. 2015). Using various techniques, most of
which involve computer-controlled servomotors, investigators control the angle and
duration of movement at specific joints. An advantage of using passive range of
motion is that it is non-weight bearing in nature and does not require muscle fiber
innervation to be effective (Greising et al. 2018). Notably, in rat models of spinal
cord injury, range of motion exercise has been conducted while the rat is conscious
(Keller et al. 2017), with investigators manually performing all the exercises; for
this, timing in each position was accomplished using a standard metronome. How-
ever, investigator-controlled range of motion exercise could induce more variability
than the servomotor-controlled rehabilitations. It is also important to note that timing
(i.e., start of rehabilitation post-injury, duration, frequency) and range of motion
parameters will play a role in the effectiveness and physiological response. For
example, earlier implementation of passive range of motion caused a higher rate of
recurrent tendon tears in rotator cuff injury (Chang et al. 2015), suggesting a delayed
start of range of motion rehabilitation should be considered. Additionally, fast
repetitive stretching was more effective in suppressing muscle fibrosis in rats with
denervated sciatic nerve than slower stretching (Tanaka et al. 2017). Passive range of
motion could also be performed in conjunction with other modes of rehabilitation,
such as intermittent in vivo electrical stimulation, which represents a rehabilitation
regimen that is readily translatable to the clinic, even while patients are non-weight
bearing (Greising et al. 2018).

2.5 Importance of Functional Outcomes and Future
Considerations

To fully leverage preclinical animal studies in building a foundation to develop
evidence-based rehabilitation practices for humans, there needs to be a focus on
functional outcomes and clinically relevant techniques. Functional outcomes will
vary depending on the organ system of interest. For example, function outcomes for
skeletal muscle are typically measurements of muscle force and/or torque (Call and
Lowe 2016), whereas functional outcomes for tendons may include in vivo passive
stiffness about a joint or assessing ex vivo stiffness properties of isolated tendons
(Wang et al. 2006). Some organ systems require indirect functional outcome mea-
surements such as the central and peripheral nervous systems where outcomes such
as grasping task successes vs. failures, novel object recognition tasks, and/or maze
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orientation are valuable (Noble et al. 2019; Zemmar et al. 2015; Wolf et al. 2016). A
functional outcome is perhaps the strongest way to advance the efficacy of any
rehabilitation approach.

Many of the approaches emphasized in this chapter can serve a dual role as both
rehabilitative approaches and endpoint measurements of adaptation (i.e., functional
outcomes). For example, a treadmill can be used to administer weekly rehabilitation
of a set distance (e.g., 1 km/day), and an acute treadmill fatigue test can be an
important endpoint outcome to evaluate the extent to which rehabilitation resulted in
whole-body adaptations (i.e., greater treadmill running endurance compared to a
control) (Dougherty et al. 2016). Similarly, a stimulating electrical nerve cuff can be
used to precisely activate a particular muscle group and provide repeated rehabili-
tation. The nerve cuff approach can be combined with a torque transducer to measure
muscle strength prior to and at the conclusion of the rehabilitation window to
determine beneficial remodeling of the targeted muscle group (Call et al. 2011).

The relationship between the preclinical and clinical rehabilitation environments
is dynamic and ever-evolving. Sometimes techniques evolve or manifest first in the
clinical or commercial rehabilitation environments prior to preclinical testing. For
example, whole-body cryotherapy, in which the body is treated with extremely cold
air in hopes of lessening muscle soreness, is a commercial practice with little to no
evidence-based proof of effectiveness (Costello et al. 2015). For their part, preclin-
ical researchers should consider the scalability and clinical relevance of their reha-
bilitative approach. Several techniques highlighted in this chapter both scale up well
and are clinically feasible. For example, treadmill exercise is effective in the mouse,
pig, and humans across different disease conditions (Hyzewicz et al. 2015;
McDermott 2018; Robles and Heaps 2015). Vibration, discussed as an option for
mice in this chapter, has served as a rehabilitation approach in both equines
(Halsberghe 2017) and humans (Ritzmann et al. 2018). The future of developing
and validating rehabilitative techniques can be strengthened by partnerships between
the researcher and clinician to best deliver a bench to clinic model.
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