
On the Horizon From the ORS

Regenerative Rehabilitation of the
Musculoskeletal System

R egenerative rehabilitation is
the convergence and integra-

tion of regenerative medicine and
physical rehabilitation sciences.1

Physical therapy (PT) is essential to
support the return to function of a
damaged or repaired tissue. How-
ever, the specific effects of PT down
to the cellular level of regeneration
are largely unexplored.2 Conversely,
when thinking of regenerative ap-
proaches, the mechanical environ-
ment that cells and scaffolds must
withstand in orthopaedic repair is
often regarded as a challenge that
needs to be endured or overcome
rather than as an opportunity that
can be leveraged. In tissue engineer-
ing, cellular mechanobiology is more
often studied to promote the matu-
ration and the three-dimensional
organization of engineered con-
structs, ranging from aligned mus-
cled fibers to the zonal organization
of chondrocytes. Regenerative re-
habilitation can then be appreci-
ated as an approach to translational
mechanobiology, in which the
mechanical cues driving cell differ-
entiation and function are directed
by rehabilitation routines to pro-
mote repair and regeneration.3,4

Bone is well known to respond and
adapt to changes in load (Wolff’s
law). However, during regeneration
after fracture or critical bone defects,
the picture becomes more complex,
as there is not just the bone to
account for but also a defect with
associated instability, the repair
tissue that bridges the defect, and
vascularization that is required for
effective healing. Ambulatory loads
have been found to promote frac-
ture repair5 and to regulate angio-
genesis,6 so if the axial loads across

bone defects can be monitored7

and related to vascularization and
repair,8 this would allow us to design
fixation strategies that transfer loads9

and ambulatory exercises so as to
promote regeneration and ideally
accelerate a full patient recovery.
The stability of the fracture fixation
has a direct influence on whether
fracture repair is achieved by way
of endochondral ossification or direct
intramembranous healing, and this
can bemodulated by the loads applied
during the rehabilitation period.
When stemcells are used to support

healing of muscle injury, exercise-
driven mechanical activation
supports proliferation of the trans-
planted stem cells and their effective
repair of the injured muscle.4 For
larger volumetric muscle loss, in
which scaffolds are combined with
stem cells for repair, exercise regi-
mens enhance both force production
and innervation of the engineered
construct.10 Robotic platforms could
then be developed to monitor muscle
impairment and administer tailored
training during the recovery process
to enhance repair and overall motor
performance.11

Normal cartilage homeostasis is
reliant on cyclical loading, and this
has been associated in part with
mechanical activation of matrix-
associated transforming growth
factor-b. Within native cartilage,
this is thought to be strongly influ-
enced mechanically at the su-
perficial zone12 but enzymically
regulated in the deeper zones.13,14

Chondrogenic differentiation of
human bone marrow–derived
mesenchymal stromal cells, such as
those that would be present during
microfracture, can be induced
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in vitro by mechanical forces
alone,15 and a similar response has
been observed in human articular
chondroprogenitor cells.16 This is
due to the production and activation
of endogenous transforming growth
factor-b, a process that, in part, is
regulated by the application of
shear.17-19 Such mechanistic knowl-
edge at the protein and cellular level
provides the opportunity to devise
rehabilitation protocols based on a
strong underlying scientific rationale.
The joint as a whole, however,

consists of more than just articular
cartilage. In fact, the joint is an organ
comprising multiple tissues—bone,
cartilage, synovium, meniscus, liga-
ments, and infrapatellar fat pad—all
of which interact and influence each
other.20,21 More generally, in con-
sidering the musculoskeletal system,
one should not approach it as eval-
uating each tissue in isolation, but
rather should regard it as a contin-
uum of components, all tightly con-
nected and transitioning from one to
the next via the osteochondral junc-
tion, the enthesis, and so on.22 The
development of proregenerative re-
habilitation regimens should then
account for load transduction across
tissue interfaces20 and for the differ-
ent mechanobiological responses of
each tissue.
Overall, PThasbeenused foryears in

orthopaedics to promote tissue repair
and return to function. However, the
cellular signaling and mechanistic
relation between exercise and cellular
responses are still far from being fully
appreciated. Better understanding of
these underlying mechanisms would
allow us to design the rehabilitation
protocol based on empirical data,
focusing on the integration with re-
generative medicine to enhance pa-
tients’ outcomes.3,23 The development
of assistive devices to monitor the
progression of tissue repair and guide
accordingly the delivery of proregen-
erative mechanoactivation stimuli
could greatly enhance the research in

regenerative rehabilitation and the
delivery of personalized regenerative
treatments.
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